ACID ROCK DRAINAGE (ARD)

"uplifting the whole people"

- HENRY MARSHALL TORY, FOUNDING PRESIDENT, 1908

- Formerly "Acid Mine Drainage" (AMD)
 - Not restricted to mines
- Weathering of sulfide minerals, particularly pyrite
 - Rio Tinto, Spain (photo)
 - Sulfur Creek,_____
- Global liability from ARD now exceeds \$100 B (2011)
- West Virginia spends > \$1M/day treating ARD

https://upload.wikimedia.org/wikipedia/commons/9/91/Riotintoagua.jpg

ARD results from physical, chemical, and biological properties occurring in combination:

- Surface area, grain size
 - Small grain size / high surface area reacts first
- Presence of: oxygen, water, oxidizers (iron), existing acidity, high temperature
- Ferroxidans bacteria

Kim Askew - Winter 2011 CIV E 682 Course Notes

- Iron sulphide (pyrite), FeS₂, is most common sulphide mineral
- To initiate pyrite oxidation, oxygen and water are needed:
 - 1) $2FeS_2 + 2H_2O + 7O_2 \longrightarrow 4H^+ + 4SO_4^{2-} + 2Fe^{2+}$
 - 2) $4Fe^{2+} + 10H_2O + O_2 \longrightarrow 4Fe(OH)_3 + 8H^+$
- Less oxygen required in (2), but more acidity produced
- (1) & (2) occur until pH ~4.5 when $2Fe^{3+}$ can remain in solution
- Abiotic until pH ~4.5

- 1) $2FeS_2 + 2H_2O + 7O_2 \longrightarrow 4H^+ + 4SO_4^{2-} + 2Fe^{2+}$
- 2) $\underline{4Fe}^{2+} + 10H_2O + O_2 \longrightarrow 4Fe(OH)_3 + \underline{8H}^+$
- 3) $2Fe^{2+} + O_2 + 4H^+ \xrightarrow{T. Ferroxidans} 2Fe^{3+} + 2H_2O$ pH < 4.5
- 4) $FeS_2 + 14Fe^{3+} + 8H_2O \longrightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+ pH < 3.5$

Reaction (3):

- Consumption of acidity, creation of reactive Fe³⁺ (ferric iron)
- Catalyzing bacteria require little oxygen, but speed up reaction by 5-6 orders of magnitude (i.e. x10,000 – x1,000,000 faster)

Reaction (4):

- Direct oxidation of pyrite when pH is low enough. FAST!
- Anoxic environment (possible even in tailings ponds)

- 1) $2FeS_2 + 2H_2O + 7O_2 \longrightarrow 4H^+ + 4SO_4^{2-} + 2Fe^{2+}$
- 3) $2Fe^{2+} + O_2 + 2H^+ \xrightarrow{T. Ferroxidans} 2Fe^{3+} + H_2O$
- 4) $FeS_2 + 14Fe^{3+} + 8H_2O \longrightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$

The cycle continues...

- Low pH water can be released to environment
 - Low pH water dissolves metals in exposed rock
 - Heavy metal toxicity in water
 - Sterilization of downstream land and water

Progression of Stages in Acid Generation with Time as a Function of pH (Adapted from SRK, 1992)

"uplifting the whole people" - HENRY MARSHALL TORY, FOUNDING PRESIDENT, 1908

Neutralization of acidic water:

 $MeCO_3 + H^+ \longrightarrow Me^{2+} + HCO_3^-$

where Me = divalent cation (i.e. calcium, Ca^{2+} , manganese, Mn^{2+} , etc.)

Reclamation of acidic soil: (CaCO₃ example)

1. Consume protons

 $3CaCO_3 + 6H^+ \longrightarrow 3Ca^{2+} + 3CO_2 + 3H_2O$

2. Exchange Al³⁺

 $3Ca^{2+} + Al_2 \longrightarrow Ca_3 + 2Al^{3+}$ (on surface) (on surface)

3. Precipitate Al³⁺

Overall: $2AI^{3+} + H_2O \longrightarrow 2AI(OH)_3 + 6H^+$ $3CaCO_3 + AI_2 + 3H_2O \longrightarrow Ca_3 + 2AI(OH)_3 + 3CO_2$

Normalized Sulphide oxidation rates with and without bacterial mediation (from Robertson & Broughton, 1992)

nH

Characterization:

- Site specific conditions <u>always</u> dictate
 - Potential for carbonate coating & isolation rendering them unreactive with acidity?
 - Already at a stage beyond effectiveness of carbonate?
- Site specific characterization is intended to answer the following:
 - Is ARD likely to occur?
 - What are ARD **sources**?
 - How much is likely to generate and when?
 - What pathways exist to transport contaminants to environment?
 - What receptors exist and what is the anticipated impact?
 - What methods of prevention, mitigation, or management exist?

Geologic characteristics of the ore body and host rock define the chemistry of the surface water and runoff resulting from mining.

Characterization occurs progressively:

- Preliminary assessment can be attained from geologic and environmental data collected during exploration
- Primary sources and initial receptors can be identified as project develops
- Watershed scale hydrologic & hydrogeologic analyses determine quantity & direction of **pathways**, secondary receptors
- Continual data collection and analysis is required through mine life to update prevention techniques, monitor the environment, and measure impacts.

Sources:

- Define source(s)
- Define quantity and quality of drainage
- Typical: mine waste, ore, process waste, & open cuts

Pathways:

- ID surface & groundwater pathways
- Typical: water

Receptors:

- Identify intermediary and ultimate receptors
- Typical: water bodies

ACID ROCK DRAINAGE - EQUITY SILVER MINE, BC, CANADA

1980 – 1994: Open pits (3) & small underground mine

- Closed due to resource depletion
- Copper, silver, & gold extracted
- Mill/ floatation circuit & a cyanide leach circuit
- ARD found soon after mine opened
- Large runoff managed while active

Post-Closure

2004: New high density sludge plant due to high runoff (\$10 M) Sludge placed in abandoned pit 4 full-time staff

Increased efforts, experiments

ACID ROCK DRAINAGE - EQUITY SILVER MINE, BC, CANADA

Lab Static Methods: Acid-Base Accounting, ABA

 Calculates acid potential via proportion of acid generating and neutralizing material. Always do this.

Net Neutralizing Potential = NP - AP

Net acid producing potential = MPA - ANC

AP (acid potential): kg CaCO₃/tonne of rock, or MPA (maximum potential acidity): kg H₂SO₄/ tonne of rock NP (neutralization potential): total C, assumed as calcite, or ANC (acid neutralizing capacity): kg CaCO₃/tonne of rock

- Rule of Thumb for soil:
 - 1 hectare acidic soil + 1 tonne lime = 0.1 pH increase
 - 2-3 times more NP than AP is generally "safe"

"uplifting the whole people"

Lab Static Tests: Net Acid Generation (NAG) & paste pH Tests

- One single value to determine acid potential
- NAG pH: Reacts a sample with hydrogen peroxide (H2O2) to rapidly oxidize
- Since neutralization and acid generation occur at the same time, the net result is representative of the total acid generated or total neutralizing potential
- Paste pH: mix a solid, oxidized sample with equal volume of H2O, then measure pH.
 - Cheap, simple, and fast method!
- Combine static testing results to improve confidence in predictions & define ore cut-off criteria (GARD Guide):

Lab Static / Short Term Testing

- Acid base accounting
- NAG pH
- Paste pH

Lab Kinetic Testing

- Leach samples; collect leachate after one week; test for metals and acidity; repeat.
- Slow, complicated test expedites oxidation.
- Humidity cell tests (ASTM D5744) or column tests ("barrel tests")
- Column tests provide more range in testing degree of saturation

Field Testing:

- Field leaching test (Vary in scale. Replicate actual conditions but are slow)
- Wall washing (runoff quality testing from exposed portion)
- Large scale field programs

Test cells for waste rock Grasberg, Indonesia

Paste tailings test plot, Somincor Neves Corvo Mine, Portugal

Lab Static / Short Term Testing

- Acid base accounting
- NAG pH
- Paste pH

Lab Kinetic Testing:

- Leach samples; collect leachate after one week; test for metals and acidity; repeat.
- Slow, complicated test expedites oxidation.
- Humidity cell tests (ASTM D5744) or column tests ("barrel tests")
- Column tests provide more range in testing degree of saturation

Field Testing:

- Field leaching test (Vary in scale. Replicate actual conditions but are slow)
- Wall washing (runoff quality testing from exposed portion)
- Large scale field programs

Prevention Methods: proactive avoidance of ARD requires early characterization and prediction, followed by integration of mine planning, waste management, and site design.

PNG example: area labelling to make operations' job easier.

Prevention Method: Avoid creating "problem" structures. I.e. PAG rock in a waste rock dumps.

(Chapter 6, GARD Guide)

Mitigation Methods: reactive strategy to reduce the amount of ARD produced by restricting mineral oxidation.

- Once ARD process is started, it is difficult to stop
- Can be very expensive and continue for extended time frames
 - Expensive preventative measures may be cheaper than long-term water treatment & mitigation over the long-term.
- Realistic methodology only for exhausted or legacy sites
- Challenge in waste storage:
 - Geotechnical stability: well-drained, unsaturated, stable (ie. waste rock dump)
 - Geochemical stability: undrained, fully saturated, no oxygen available for oxidation (i.e. tailings pond)
- Understand physical and chemical processes, and climate (what works in a dry climate, may not in a wet/humid climate)

Open sporadically from the 1800's

1992: Closed permanently

1992/93: Drainage systems overtopped

1994: Constructed settling ponds & water treatment facility

2002: water treatment cost exceeds £20 million

Final product: pH 9.3

Discharged to +/- pH 5 river

Improves overall water quality

in area

Expensive, staff in perpetuity

Good mitigation, but preplanning can avoid these costs

Site turned into Geo-consultant & sustainability hub

Best Practices:

- Re-mining legacy sites
- Special handling built into mine plan (backfilling voids, subaqueous deposition, etc.)
- Segregation (PAG vs. NAG material)
- Tailings desulfurization (Detour Gold, ON)
- Physical tailings conditioning (reduce oxygen diffusion & increase water retention via thickening, compaction, etc.)
- Encapsulation / Layering
- Intimate blending (homogenous deposit of AP & NP tailings)
- Covers (flat)
- Co-disposal
- Permafrost / Freezing (-8 C mean air temp. required)

Best Practices:

http://www.gardguide.com/images/e/ee/ARDPotentialofPitWallafterCessationofMining.gif

Best Practices: Additives & Amendments (\$\$\$) / "Chemical Tailings Conditioning"

<u>Passivation:</u> induce a reaction that builds an inert, protective layer on PAF rock surfaces. Generally long term solution.

<u>Alkaline materials:</u> add alkaline amendment and mix intimately.

Organic matter: this inherently has high pH, and organic matter will consume oxygen and promote metal reduction.

<u>Bactericides:</u> killing the bacteria that rapidly expedite ARD generation will slow the process to a point where it can be managed with blended carbonates alone.

Cover systems:

Increasing complexity:

- + increased performance
- increased cost &
- difficulty to construct

Keep it simple!

http://www.gardguide.com/images/a/a5/CoversandClimateTypes.jpg

"uplifting the whole people" - HENRY MARSHALL TORY, FOUNDING PRESIDENT, 1908

In Summary:

- 1. **Identify** where sulfide-rich rock is likely to develop ARD
 - Lab tests do a good job of predicting total ARD potential, but not the rate
- 2. Prevent
 - Via waste management, mine planning & design
- 3. Mitigate (ongoing monitoring required, \$)
 - Restrict oxygen diffusion and moisture ingress
 - Alter chemistry to neutralize acid
- 4. Treat (ongoing treatment required, \$\$\$ + liability)
 - Collect acidic runoff / effluent and treat
 - Account for waste products of treatment, if they exist

