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Abstract

There are various ways of describing intermittent features in space plasma turbulence, but we lack a unified
paradigm to connect the results from these different approaches. In this work, we aim to construct a unified
paradigm to describe various intermittency-related quantities with the same set of parameters. The Castaing
function, which describes the scale-dependent turbulence amplitude as a logarithmic normal distribution, is
adopted as a fitting function to describe the probability distribution of magnetic field difference at various
timescales τ. Two fitting parameters (μ, λ) as a function of τ are obtained and regarded as the fundamental
information, based on which various characteristics related to intermittency can be derived at one time, e.g., the
high-order structure functions, their scaling exponent as a function of the order, or the flatness as a function of τ. We
find it is the derivative ratio, DR= l

t( )
d

d ln

2 m
t( )

d

d ln
, that determines the order trend of the scaling exponent ζ(m). A

negative DR of a small absolute is responsible for a curved ζ(m) in the inertial range, and a large positive DR leads to
a straight ζ(m) in the kinetic range. Therefore, it is suggested that the probability distribution function of the magnetic
increments spreads in width (λ(τ)) with decreasing τ in the inertial range, while it is saturated and even slightly
reduced in the kinetic range. Moreover, it is found that the turnings between the inertial and kinetic scales for the two
Castaing fitting parameters μ(τ) and λ2(τ) occur at different scales: lnτ∼0 and lnτ∼2, respectively. The reason for
this different behavior is still unclear.

Key words: interplanetary medium – solar wind – turbulence

1. Introduction

Intermittency, an important aspect of turbulence, is regarded
as the result of inhomogeneous cascading with a fluctuating
energy transfer rate in space (Frisch 1995; Sorriso-Valvo et al.
1999; Bruno & Carbone 2013; Osman et al. 2014). The
intermittent structures are locally coherent places with stronger
fluctuations, where more turbulence energy is transferred,
dissipated, and converted to gas kinetic energy (Wan et al.
2015; Zhang et al. 2015). In the solar wind, intermittency and
waves are currently being considered as two possible
populations of turbulence, through which turbulence energy
is channeled down to particle kinetic scales (Wang et al. 2013;
He et al. 2015a, 2015b; Howes 2015, 2017; Klein 2017; Jiansen
et al. 2018). Current sheets probably involving magnetic
reconnection are one kind of coherent magnetic structure
(Gosling et al. 2005; Phan et al. 2006; Borovsky 2008; Li
et al. 2011; Servidio et al. 2011; Pulupa et al. 2014). Multi-order
structure functions (SFs) at kinetic scales inside and outside the
reconnection exhaust exhibit different behaviors: multifractal
and monofractal scalings for the former and latter, respectively
(Wang et al. 2015). There are several methods to identify the
intermittent structures: “partial variance increment” analysis of
the difference sequences at various time lags (Greco et al. 2009);
“local intermittency measure” based on local wavelet coeffi-
cients as normalized to the global averaged value (Bruno et al.
2001); “local energy transfer” based on the third-order moment
scaling law (Sorriso-Valvo et al. 2018). Magnetic reconnection
sites and vast exhaust regions as coherent structures in the solar
wind are found to be bounded by a pair of compound
discontinuities and emit significant Alfvénic waves due to
firehose instability, thereby building up a complicated set of

intermittency (Liu et al. 2012; Jiansen et al. 2018). However,
magnetic reconnection configuration is not a unique type of
intermittent structure, which can also be of other types, e.g.,
rotational discontinuities, tangential discontinuities with unidir-
ectional magnetic field, local large-amplitude waves (Greco &
Perri 2014; Zhang et al. 2015; Yang et al. 2017). The
introduction of kinetic-scale intermittent structures of different
dimensions, e.g., sheet-type or tube-type, is suggested to modify
the spectral index of power spectral densities (PSDs)(k⊥), adjust
the critical-balance relation between k⊥ and kP, and probably
increase the frequency w (Zhao et al. 2016).
Intermittency also has statistical influence on the turbulence

characteristics. The simplified model of turbulence without
intermittency is characterized with the following classical
features (Tu et al. 1996). (1) The probability distribution
function (PDF) of field increments can be approximated with a
Gaussian distribution (PDF(δB(τ))∼N(0, σ2(τ)). (2) The
flatness of PDF(δB(τ)) stays around 3, a characteristic value
pertaining to a Gaussian distribution. (3) The SF of order m (SF
(τ; m)) can be described by a power-law function with the
exponent being linearly scaled ( t t t~ ~z a( ) ( )mSF ; m m).
However, the actual turbulence cannot be fully described
without including the effects of intermittency. Due to the
existence of intermittency, PDF(δB(τ)) deviates from the
Gaussian distribution, with a remarkable extended tail on
the end of both wings. Furthermore, PDF(δB(τ)) can be super-
Gaussian at the center, sub-Gaussian at the intermediate range,
and super-Gaussian at the distant tail. The flatness rises from
the level of 3 as the scale τ decreases from large values in the
MHD inertial range (Pei et al. 2016). However, the increase of
flatness slows down, ceases, and even turns to a decrease when
coming to the kinetic scales (Wu et al. 2013). The scaling
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exponent ζ(m) behaves differently in the inertial and kinetic
ranges: a concave curve in the inertial range and a nearly
straight line in the kinetic range (Kiyani et al. 2009).

To quantitatively describe the statistical characteristics of
intermittency, one needs to invoke a mathematical model that
can account for the features of various aspects as completely as
possible. There have been various mathematical models
dedicated to explaining the performance of ζ(m) by assuming
the fragmentation of energy transfer rate. In the random-β
model, the energy transfer fragmentation is defined by a
random space-filling factor variable β, which is assumed to be a
bimodal distribution with a probability of ξ for space-filling
eddies and a rest probability of 1-ξ for planar sheets (Benzi
et al. 1984). In the p-model, the energy fragmentation
bipartitions unequally over two equally-partitioned spatial
intervals (Meneveau 1991; Carbone 1993). In the log-Poisson
model, the turbulence amplitude decays over scales by a factor
of βq, where β is a quantity less than 1 and q is a random
variable following a Poisson distribution (She & Leveque 1994;
Chandran et al. 2015). The above three models based on the
idea of energy transfer rate fragmentation help us to understand
the essence of intermittency by comparing observational and
modeled ζ(m).

On the other hand, the observational PDF(δB(τ)) has hereto
been scarcely reproduced or compared with models of energy
transfer rate fragmentation. The profile of PDF(δB(τ)) cannot
be simply fitted with a Gaussian function, since the amplitude
of δB(τ), σ(τ), may be widely distributed rather than a certain
fixed value. If σ(τ) is log-normally distributed as ln(σ(τ))∼
N(μ(τ), λ2(τ)) and δB(τ) is normally distributed as δB(τ)∼
N(0, σ2(τ)), then the function to describe the PDF(δB(τ)) is the
so-called Castaing function (Castaing et al. 1990). The
Castaing function has been successfully employed to fit and
describe the features of PDF for solar wind turbulent
disturbance (Sorriso-Valvo et al. 1999, 2015; Luo et al.
2011; Ragot 2013).

By invoking the Castaing function, the intermittent turbulence
can be approximately represented with two scale-dependent
parameters (μ(τ), λ2(τ)). How are these two scale-dependent
parameters related with the other frequently used measures of
intermittency, e.g., flatness (F(τ)), scaling exponent (ζ(m)), and
so on? What physics can be implied from the different scaling

properties of μ(τ), λ2(τ) in the inertial range and in the kinetic
range? These questions are about to be addressed in this work.

2. Formulas of SF, Flatness, and Scaling Exponent Derived
from Castaing Function

As one of the possible PDFs of turbulent fluctuation δB(τ) at
scale τ, the Castaing function uses a log-normal distribution for the
fluctuation standard deviation σ(τ) and a normal distribution for δB
(τ) belonging to a subset with a certain σ(τ). The PDF of δB is an
integral of joint PDF, PDF(δB, ln σ), over the range of variable lnσ:

ò

ò

d d s s

d s s s

=

=

-¥

+¥

-¥

+¥

( ) ( )

( ∣ ) · ( ) ( )

B B d

B d

PDF PDF , ln ln

PDF ln PDF ln ln , 1

where the joint PDF, PDF(δB, ln σ), is a multiplication of
conditional PDF, d s( ∣ )PDF B ln , and PDF(ln σ). Therefore, the
final format of PDF(δB) can be written as

ò

d

ps
d
s pl

s m
l

s

=

´
- - -

-¥

+¥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

B

B
d

PDF

1

2

exp
2

1

2
exp

ln

2
ln . 2

Castaing

2

2

2

2

The SF of m-order, SFm, is defined as
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The SF can also be expressed as
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It can be seen that SFm(τ) is a two-fold integral, the integration
order of which needs to be switched in order to have an analytic
integration result. As a consequence, SFm(τ) can be described
directly by μ(τ) and λ2(τ) as

t l t m t= +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )C m

m
mSF exp

2
, 5m

2
2

where = G
p

+( )( )C m m2 1

2

m

. Based on the formula of

SFm(τ), the flatness can be expressed directly by λ2(τ) as well

Figure 1. Power spectral density of Bz fluctuations in the three time intervals. The MHD inertial range with a spectral index of about −1.63 can be found at
f<0.3 Hz. In the kinetic range beyond the spectral break, the PSD profile is steeper, with its spectral index being even smaller than −2.63. The tiny bump of PSD at
the highest frequency end may be due to an aliasing effect caused by a finite sampling frequency.
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(Sorriso-Valvo et al. 2015):
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The scaling exponent ζ(m) for t tz( ) ( )SFm
m is therefore

determined by the scale dependence of μ(τ) and λ2(τ),
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3. Fitting Procedure under the Castaing Framework

According to our test experience of the solar wind magnetic
turbulence, we find that PDF(δB|λ, μ) and SF(m|λ, μ) have
different sensitivities to the two fitting parameters (λ, μ) of the

Castaing function, although both PDF(δB|λ, μ) and SF(m|λ, μ)
are determined by both λ(τ) and μ(τ). PDF(δB(τ)) seems more
sensitive to λ(τ), while SF(τ; m) is more sensitive to μ(τ).
Therefore, we suggest conducting a simultaneous fitting
analysis of PDF(δB(τ)) and SF(τ; m), in order to more
precisely estimate the fitting parameters (λ(τ), μ(τ)). We utilize
the “Gradient Descent Algorithm” to approach the minimum
level of a joint residual, and thereby find out the parameters
(λ, μ), possessing the best-fitting results of both PDF(δB|λ, μ)
and ln(SF(m|λ, μ)). The joint residual is defined as the
weighted sum of residuals between fitting results and
observational data, which reads as

s s s= + ( )k k , 8joint 1 PDF 2 lnSF

Figure 2. PDFs of dBz in logarithmic scale at three different time lags (from top to bottom) of three cases (from left to right). The black and red lines respectively
represent the original PDFs and fitted PDFs, a joint fitting result of PDF(dBz; μ(τ), λ

2(τ)) and SF(m; μ(τ), λ2(τ)) based on Castaing function.
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where k1 and k2 are weights set to be 0.5 and 0.5 in this work.
The residuals σPDF and σln SF are calculated as
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It can be seen that σjoint(λ, μ) is a two-dimensional parameter
space function, hence the position of the minimum σjoint(λ, μ)
can be obtained with the “Gradient Descent Algorithm.” At
each iteration, (λ, μ) are updated as
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where l is the step length.

4. Fitting of Observational PDF and SF

We apply the aforementioned fitting procedure to three
samples of fast solar wind measurements from the WIND
spacecraft during the time intervals [1995 April 8, 1995 April
12], [1995 May 3, 1995 May 8], and [2008 March 10, 2008
March 15], respectively. Before conducting the fitting
process, we plot in Figure 1 the PSDs of Bz-component
fluctuations for the three cases. The inertial and kinetic ranges
can be clearly identified according to their different power-
law characteristics. We know that the background interpla-
netary magnetic field (IMF) lines usually lie within the x–y
plane of the GSE coordinates when measured by the WIND
spacecraft in the ecliptic plane. The turbulence of fast solar
wind is characterized with Alfvénic fluctuations, which
oscillate transversely to the background IMF direction.
Therefore, Bz fluctuation, as compared to Bx and By, is a
component more appropriate to represent the turbulent
fluctuations.

Figure 3. Relation between lg10(SF(τ; m)) and lg10(τ). The structure functions calculated directly from data are plotted in black, while their counterparts, as obtained
from a joint fitting result of SF(m; μ(τ), λ2(τ)) and PDF(dBz; μ(τ), λ

2(τ)), are plotted in red.

Figure 4. Scale dependence of flatness (F(τ)) for three cases (from left to right). The black lines are plotted with t = t

t

á ñ

á ñ
( ) ( )

( )
F dB t

dB t

;

;
z

z

4

2 2 . The red lines are plotted on the

basis of t = l( )F e3 4 2
, with λ2(τ) being the fitting parameter of the Castaing function for PDFs(dBz) at time lag τ.
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The time difference of Bz at different time lags τ is
calculated as

t
t t

= + - -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )dB t B t B t;

2 2
. 11z z z

PDFs of dBz at different time lags of τ are constructed, and
displayed as black lines in Figure 2. The fitted profiles,
PDFfit(dBz; λ, μ), are also plotted as red lines in Figure 2. The
panels from top to bottom rows in Figure 2 correspond to three
different time lags: τ1∼ 73.69 s, τ2∼8.28 s, and τ3∼0.37 s.
It can be seen that the fitting results match with the
observational data at all investigated scales of τ, suggesting
the successful application of the fitting procedure. The three
time lags (τ1, τ2, and τ3) we choose in our study are
representatives of three characteristic scales: (1) the scale well
in the MHD inertial range; (2) the scale near the end of MHD
regime but not yet reaching the spectral break; (3) the scale
beyond the break and near the onset of the kinetic range.

The fitting matches better as the scale becomes smaller. It is
found that PDFʼs profile appears slightly asymmetric in the
inertial range, with a tiny enhancement on the right wing, while
transits to symmetry are at scales in the “dissipative” range.
This phenomenon of a transition from asymmetry toward
symmetry indicates the reduction of net energy transfer rate
(cascading rate) when moving from the inertial range into the
dissipation range, and is a direct consequence of the third-order
moment scaling law that defines intermittency in turbulence
(Politano & Pouquet 1998). Therefore, the symmetric Castaing
fitting function used in this work may be more appropriate to

describe the PDF in the dissipation range and the higher-
frequency part of the inertial range, as compared to that in the
lower-frequency part of inertial range.
The multi-order SF, SF(τ; m), is another object to be fitted

with the fitting procedure. The black curves in the three panels
of Figure 3 represent the three cases of SFs with the order
increasing from m=0.5 to m=3, for which statistical
convergence is safely verified. As a comparison, the fitting
results of SF(m|λ(τ), μ(τ)) are plotted as red curves. It can be
seen that the observational SF is fitted very well. According to
the standard analysis, the SF(τ; m) are fitted as a function of τ
for every individual order m. In the present work, SF(m|λ(τ),
μ(τ)) is fitted as a function of m at every scale of τ. The
advantage of the present fitting method over the former ones
lies in the self-consistent incorporation of two objects (PDF
and SF) to be fitted self-consistently in one single procedure.
To our knowledge, this is the first successful attempt to fit the
whole set of SF based on the derivation of the Castaing
function.
The third product of the fitting procedure will be the scale-

dependent profile of the flatness (F(τ)). Figure 4 displays a
comparison between observed and fitting-derived flatness
profiles, both of which illustrate an analogous trend: a linear
increase in the log–log scale at large scales (indicating the
predicted power-law increase), saturation at intermediate
scales, and finally a weak decrease at small scales, below the
MHD range. The fitting-derived flatness is slightly smaller than
the observed counterpart, which may be related to the fitting
defect on the PDFʼs tail, as illustrated in Figure 1.

Figure 5. Scale dependence of μ and λ2 for three cases (from left to right). The profile transitions (break) of μ and λ2 happen at lnτ0 and lnτ2, respectively.
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5. Scale Dependences ofm(t ) and λ2(τ) and Their Influence
on the Fractal Scaling Behavior

Figure 5 displays the profiles of the fitting parameters (μ, λ2)
over time lags τ. The value of m s~ á ñln decreases mono-
tonically with decreasing τ, illustrating two different power
laws (linear scaling in the log–log plot) separated by a break

located at sá ñ ~ln 0. This can be expressed as

m s a t
a t
a t

~ á ñ ~
~ >
~ <m

m

m

⎧⎨⎩ ( )ln ln ,
0.4, ln 0

0.7, ln 0
. 12

Similarly, λ2 first increases, then saturates, and finally slightly
decreases, as the scale τ reduces from larger than 400 s down to

Figure 6. Scaling exponent of structure function vs. the order m in both the kinetic range (top) and MHD range (bottom). The ζ(m) values on the black lines are

obtained from direct fitting of data with SF(τ; m)∼τ ζ(m), while the ζ(m) values on the red lines are calculated with z = = +
t

l
t

m
t

( ) ( )
( ) ( ) ( )

m md S

d

m d

d

d

d

ln

ln 2 ln ln
m

2 2
, where μ(τ)

and λ2(τ) are fitting parameters of the Castaing function for PDFs(dBz) at various time lags τ. The straightness of ζ(m) in the kinetic range is caused by a relatively

larger l
t

m
t( ) ( )

d

d

d

dln ln

2
, while the curvature of ζ(m) in the MHD range is due to a relatively smaller l

t
m
t( ) ( )

d

d

d

dln ln

2
and negative l

t( )
d

d ln

2
.

Table 1
Analysis of Controlling Parameters Responsible for the Multifractal and Monofractal Scalings of Magnetic Turbulence

in the Respective Inertial and Dissipation Ranges

Variables, Functions Case-1 Case-2 Case-3

Inertial Range (t ∼ [6.44, 82.89 s]) (Multifractal Scaling) d/dlnτ 0.368 0.374 0.386
l td d ln22 −0.059 −0.062 −0.066

|d/dlnτ|/| l td d ln22 | 6.22 6.01 5.87
ζ(m) concave concave concave

Dissipation Range (t ∼ [0.09, 0.83 s]) (Monofractal Scaling) d/dlnτ 0.756 0.756 0.743
dλ2/dlnτ 0.007 0.004 0.027

|d/dlnτ|/|dλ2/dlnτ| 116.17 193.77 27.34
ζ(m) linear linear linear
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smaller than 0.15 s. The profile of λ2(τ) can be approximated as
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0.06, ln 2
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Substituting the approximations of μ(τ) and λ2(τ) into the
expression of SF(τ; m=2), we can get the joint scaling
exponents for the second-order SF in both the inertial and
dissipation range,

t l t

m t a t
a t
a t
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+ ~
~ >
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m C m
m
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2
2

SF
SF

SF

The scaling exponents of the second-order SF are consistent
with the typical Kolmogorov power spectral density exponent
∼−5/3, corresponding to –(α+1). The range t Î [ ]ln 0, 2
may be called a transition range, bridging the inertial and
dissipation ranges.

The scaling exponent ζ(m) of an m-order SF with τ as the
base is expressed as in Equation (7). Whether the intermittency
is characterized by monofractal or multifractal scaling can be
judged from the linear or nonlinear profile of ζ(m). At different
τ, the profile of ζ(m) can be different, e.g., changing from a

nonlinear to a linear trend with decreasing τ. Figure 6 displays
ζ(m) at small τ in the dissipation range (upper panels), and at
large τ in the inertial range (lower panels). The black lines
represent the scaling exponent as estimated from the observed
SF(τ, m), and the red lines represent the scaling exponent
calculated from fitting parameters μ(τ) and λ2(τ) according to
Equation (7). The quasi-linear trend of ζ(m) in the dissipation
range, a signature of monofractal scaling of intermittency, is

attributed by the large ratio of l
t( )

d

d ln

2

to m
t( )

d

d ln
(e.g.,

l
t

m
t

∣ ∣( )

( )
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d
d

d

2
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ln

>20).

On the contrary, the concave nonlinear trend of ζ(m) associated
with the nature of multifractal scaling is mathematically

determined by the small ratio (
l
t

m
t

∣ ∣( )

( )

d

d
d

d

2

ln

ln

<10) and negative value

of l
t( )

d
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2

.

Associated with Figure 6, Table 1 shows the values of m
t( )

d

d ln
,

l
t( )

d

d ln

2

,
l
t

m
t

∣ ∣( )

( )

d

d
d

d

2

ln

ln

, and the inferred profile type of ζ(m) for both the

inertial and dissipation ranges of the three cases. The value of
m
t( )

d

d ln
in the inertial range is positive and about half of that in

the dissipation range. The value of l
t( )

d

d ln

2

in the inertial range is
negative, while its counterpart in the dissipation range is

Figure 7. Sketch of the modeling framework (highlighted with red boxes and red arrows) as derived and extended from the Castaing function. The black boxes contain
four functions (PDFs, flatness, structure function, scaling exponent) that are calculated directly from data. The consistency between the modeling results (red boxes)
and data reductions (black boxes), as demonstrated in aforementioned figures and sections, is marked with blue bidirectional arrows. The features of flatness, scaling
exponent, and fractal scaling as determined by μ(τ) and λ2(τ) in both the inertial and dissipation ranges are summarized in blue boxes.
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positive and smaller in absolute value. The characteristics of
l
t( )

d

d ln

2

in both inertial and dissipation ranges are responsible for
the feature of the flatness profile over the timescale, which
increases to a peak around the break and then slightly reduces
beyond the break. From the table, one can clearly understand
the reason why the inertial and dissipation ranges have different
scaling behaviors.

6. Summary and Discussion

Fitting the PDFs of turbulent field increments at various
scales with a Castaing function has been adopted here as an
efficient approach to comprehensively quantify the statistics
feature of turbulence. Quantitative expressions based on the
fitting parameters are obtained to describe the scale dependence
of multi-order SFs (SF(τ; m)), the fractal scaling behavior
(order dependence) of the scaling exponent of SFs (ζ(m)), and
the scale dependence of flatness (F(τ)). The full functions of
procedure are summarized in Figure 7. The scale dependences
of fitting parameters (λ(τ), μ(τ)), which are responsible for the
differences in the three functions (SF(τ; m), ζ(m), and F(τ))
between the inertial and dissipation ranges, are also elucidated
in Figure 7.

Supposing that the turbulence amplitude σ has a log-normal
distribution, λ(τ) is the standard deviation of the natural
logarithm of σ (ln(σ)). Again, note that λ(τ) does not increase
with decreasing τ, but saturates and even slightly decreases
(Alexandrova et al. 2008; Kiyani et al. 2013). This phenom-
enon may have potential significance for understanding
the physical nature of the kinetic range and its essential
difference with respect to that of the inertial range. It implies
that the dissipation or secondary dispersive cascading, yet to be
unambiguously identified, may not only reduce the mean value
of ln(σ) but also restrain the growth of the standard deviation of
ln(σ). The physical reason for the behavior of λ(τ) in the
kinetic range remains an open question for future investigation.
Another interesting characteristic is the different break
positions of μ(τ) and λ(τ): the profiles of μ(τ) and λ(τ) turn
from one trend to another trend at around 1 s and 7 s,
respectively. It remains unknown why the turning of λ(τ)
occurs at a larger scale than that of μ(τ). Are two relatively
independent processes responsible for the different perfor-
mances of λ(τ) and μ(τ)?

Although the simplified Castaing function is to some extent a
good approximation of PDF(δB(τ)), its symmetry restricts
it from being applied to estimating cascading rate, which exists
for the asymmetric PDF(δB(τ)). To make a extension, one needs to
adopt a more comprehensive Castaing function by introducing
some asymmetric factor, e.g., multiplying the symmetric normal
distribution (PDF(δB(τ)|σ)) with an asymmetric function defined
by a skewness parameter, to resemble the asymmetric PDF(δB(τ))
(Sorriso-Valvo et al. 2015). The scale dependence of the skewness
and its relation to the fitting parameters will be investigated in
detail in a later work.
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